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Statistical Approaches to Toxicological
Data
by D. G. Hoel*

Statistical techniques as appled to toxicological data are discussed. Issues concerning statistical
hypothesis testing and combining studies are considered as well as design of experiments. The problems
surrounding risk assessment are also mentioned.

Introduction
In enumerating the objectives of statistics in tox-

icology, probably the most commonly recognized
one is the attempt to quantify the precision of various
estimates. Typically, this is concerned with quan-
tifying one's confidence in an observed treatment
control difference, and possibly with the confidence
one has in an observed dose-response relationship.
From this point of estimation of precision, one

moves logically into the area of combining conclu-
sions from various studies in order to numerically
describe the effects ofa given agent or agents. In this
instance we must consider doing more than simply
tabulating the positive and negative studies. The
statistician can be of assistance by examining the
data and explaining inconsistencies if they do, in-
deed, exist. Very often when one considers the dif-
ferences of dose and duration of studies and the
statistical power of different assays, there may be
more consistency than is apparent by simply
categorizing the studies with regard to whether or

not they achieve an arbitrary 5% level of statistical
significance.
Another area of statistics in toxicology which re-

ceives a modicum of attention, surely not as much as

it merits, is the design of experiments. We are refer-
ring to the classical fundamental question of dose
selection and sample size. In working with tox-
icologists, one often finds that studies are poorly or

insufficiently designed. Some of the time this is ex-

cused on the basis of doing only a "pilot study."
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Often the projected study is never conducted and the
casually designed pilot work stands as is, in its in-
complete state. Thus, I feel toxicologists should
more often consult with the statistician initially. In
this way they can clarify and define their objectives,
and hopefully, this early interaction of statistician
and toxicologist will lead to more efficient and sen-
sibly designed studies.
The topic of data reduction and interpretation is

also of more than passing interest. Specifically, we
refer to reducing rather complicated, multifactor,
multiresponse data into more easily understandable
terms. One example of this is experimental informa-
tion related to multivariate time series data sets
which is being generated by some types ofbehavioral
studies. I believe that this area has an important
future in biostatistics and toxicology.
The next aspect of statistics which has been re-

ceiving much attention in toxicology is the construc-
tipn and application of mathematical models in order
to better understand biological processes. Consider-
able effort has been directed not so much toward
understanding the processes, but in the direction of
trying to extrapolate processes outside their range of
observation. Recently, this approach has been
utilized in an attempt to understand the potential
risks oflow dose exposure levels to man, based upon
the extrapolation of high dose toxicological data. In
this area, statistical errors are being discussed, but
we have not as yet been able to satisfactorily quan-
tify the biological errors. In other words, what are
implications of faulty model assumptions?
The final area of concern to statisticians is the

application of operations research techniques. From
regulations such as the Toxic Substance Act we are
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delving further into questions of how to best manage
batteries of tests. For example, we must consider
which short term tests should be used, and in what
combinations, in order to yield a total toxicological
evaluation which is resource efficient.

Statistical Hypothesis Testing
The first area I would like to address is the problem

of statistical hypothesis testing in bioassay work.
This is probably the statistical issue which presents
itselfmost frequently and is typically concerned with
whether or not the 5% level was achieved in terms of
a treatment control comparison in tumor incidences,
for example. Here we are concerned with the type of
error level associated with a false positive. Often if a
5% level is achieved, we feel that we have a signifi-
cant result. We further arbitrarily assume that 5% to
10%o is suggestive, and greater than 10%o is non-
significant. We tend to classify this way, and these
differences in carcinogenesis clearly depend upon
dosage levels, the number and size of the ex-
perimental groups, the duration of the study and so
on. I feel that there is a greater need to assess and
understand the power of the assays. If you look at
experimental carcinogenesis, for example, with a
standard 100 treatment, 50 control animals, and con-
sider a spontaneous 5% level of tumor incidence and
compare that with an increase of about 5%, you will
find that you do not have very good power of detec-
tion (less than 5% chance) (1). Now, with this power
information, the investigator may decide not to pro-
ceed with his design. On the other hand he may want
to go ahead because he can obtain some sort ofupper
bound on the degree of a possible increased inci-
dence rate. This leads to the problem of combining
tests. The problem of statistically classifying tests by
their significance; that is, whether each is positive,
negative, or suggestive, leads to apparent inconsis-
tencies when, in fact, there may biologically be none.
How can we better approach this? One method, of
course, is to attempt an estimation of the effect; a
quantification of the effect with some measure of
confidence. For example, epidemiologists typically
talk about relative risk and the confidence associated
with the risk estimate. In comparing several studies,
they are able to compare the relative risks and, in
fact, numerically combine them. Statisticians can
also become involved with models as they try to
compare studies. Meselson (2) did an interesting
study comparing particular compounds which had
carcinogenic effects in animals and also exhibited
some evidence of human cancer effects. He was
especially interested in comparing a measurable po-
tency or degree of carcinogenicity between rodent
species and man. Now, in making such comparisons

by looking at various studies, there are models that
one can use to predict the effects of lifetime car-
cinogenesis exposure based upon less than lifetime
exposures. For example, many of the rodent studies
were lifetime studies, while the human data were
typically less-than-lifetime occupational data. It has
been suggested by Armitage and Doll (3) that the
cancer incidence rate is proportional to the duration
of exposure raised to a power equal to one less than
the number of states which represent the initiation
process.
Techniques ofthis sort can be used to compare and

bring varying studies together to hopefully form a
more complete picture of the toxicological effect. It
has been proposed recently that with carcinogenicity
studies we report a potency value such as a cancer
dose 50. This approach has been considered by sev-
eral investigators (4, 5) and is quite useful when
comparisons are attempted between differing assays
such as the Ames Salmonella assay and chronic car-
cinogenesis studies. With the Ames test we are con-
cerned with the dose, which yields twice the number
of revertents than would have been observed spon-
taneously. One then compares that dose with some
measure of carcinogenicity potency from the rodent
studies. So, we could discuss what dose would in-
duce tumors in 509o of a particular rodent strain, and
this would in turn give us some measure of cancer
potency to compare to the mutagenicity dose. Of
course, a single number does not adequately de-
scribe the entire shape ofthe dose response function,
so care must be taken. In any case, I strongly feel we
need to work towards integrating studies. Closely
related to this issue is the problem of multiple tests in
a single study. For example, if one were conducting
typical teratological assays with examinations for
various types of anomalies, an increase in cleft pa-
lates, say, may be observed. This statistical increase
may be the result of much simultaneous testing of
various types of anomalies. Salsburg (6) referred to
this in terms of the cancer bioassays. His concern is
the situation which exists when you are looking at a
number of different tumor types. If you have inde-
pendent tests, which often times you do not, the
error rate of false positives may be much higher than
expected. The NCI bioassay historical information
on spontaneous rates suggests that the actual indi-
vidual error rates are quite small due to the low
spontaneous incidence rates. Thus, with low actual
error levels, the overall false positive rate is reason-
able. This has been discussed by Fears, Tarone, and
Chu (7) with emphasis on particular strategies for
combining comparisons from various doses, species,
and sexes. Using reasonable strategies they show
that you were probably dealing with the error level
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that you thought you were, or at least approximately
so, in spite ofthe many multiple comparisons. This is
interesting when considered in light of Bayesian pro-
cedures. By dependency upon certain historical in-
formation in terms of spontaneous rate for the strains
included in the assay, we are using a priori informa-
tion on the probability of a spontaneous outcome in
order to control the nominal error rates. Clearly,
much work is needed to understand what error levels
are involved and how best to utilize available histori-
cal information.

Besides carcinogenesis there are many other spe-
cial methodologies for specific bioassay in tox-
icology. For instance, how one should analyze
teratological data or dominant lethal assays when
dealing with litters is not clear. It does seem appar-
ent, however, that one should not analyze on a per
fetus basis since the dam is the sampling unit. There
are a number of models and procedures which have
been developed and deal with such diverse methods
as u-tests on proportions of affected fetuses with
censoring and possible jackknifing, and setting up
models such as a beta-binomial representation of
inter-litter dependency. In sum, it is not yet clear
which, if any, method is best for treating the data. In
fact, this is an area where we need to focus on com-
paring these procedures and seeing if it makes any
practical difference whether or not we are using an
optimal statistical procedure. So far it seems that the
only general conclusion which has come through
clearly is to avoid using a chi-square on numbers of
affected fetuses.
For lifetime carcinogenesis studies, it is usually

assumed in analyzing the data that we are employing
competing risk and life table techniques. These
methods require an assumption of independent risks
of death. Neyman and colleagues at Berkeley (8-10)
have recently taken a scrutinizing look at this prob-
lem and have shown that this may not be a reason-
able approach and have proposed using Markov
models instead. In this instance we refer to disease
states and Markov transitions between the disease
states. The issue is, if we use competing risk tech-
niques, how robust are they if the assumption of
independent diseases is incorrect? The alternative to
the application of the Markov disease state model to
data also presents problems. Are there sufficient
parameters for the model to be realistic? If so, can we
analyze the data from very large studies with serial
sacrifice with many Markov parameters? Also, in
dealing with carcinogenesis data, we have problems
with specifying a cause of death. As was mentioned
earlier, the analysis requires that cancer in animals is
classified as either the cause of death or incidental.
This toxicological classification in addition to mixing

in serial sacrifice data with the normal mortality,
causes considerable difficulties in developing effi-
cient methods of analysis. Quite clearly we still have
serious problems in the analysis aspect of car-
cinogenesis studies. How great our problems are, we
do not know. It may be that our current unrefined
techniques are sufficient, but we cannot feel assured
of this until further studies have been completed.

Experimental Design
Now, moving from the analysis ofbioassay data to

the design ofexperiments in the carcinogenesis area,
we have been mainly looking at high dose screening
studies to determine whether or not a given com-
pound is carcinogenic. We also have need to under-
stand the dose-response distribution if we want in-
formation concerning low dose risk estimation.
From a design standpoint we do not know how to
combine dosages to obtain a balance between the
two needs. As we add low doses, we of course give
up some of the ability of the assay to detect the
effects. In other words, we must often take away the
sample size from the high dose levels since the
lifetime study is such that we do not have the time to
avoid making decisions until more low dose infor-
mation is available. It may be possible on the basis of
short term assays to get an indication of the likeli-
hood of the material to indeed be carcinogenic, some
idea about how potent it might be and, thus, where
we should locate the design points. But, to design
well, we must have some prior knowledge of po-
tency.
Some design work has been done for low dose

extrapolation. If one is interested solely in adding
one experimental dose and drawing a straight line,
assuming no background and working with confi-
dence intervals, Crump and Langley (11) have
shown that approximately the best place to locate the
experimental dose would correspond to that dose
which is one-half the dose which would yield a 10%o
incidence. Recently there have been more elaborate
attempts to make use of models such as the multi-
stage and to design optimum dose levels in terms of
sample size and dose selection, depending on the
range of parameters in the model and on the number
of stages. In all of this design work we require some
prior knowledge concerning potency, and we have to
work towards a balance between screening versus
the knowledge of the dose response function.

Sequential design techniques have not been
utilized often in toxicology as compared with, for
example, clinical trials. A few examples do exist, one
being the work of Generoso (12), in screening for
heritable translocations. Sequential breeding
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schemes have been developed. These detect semi-
sterile mice with certain statistical confidence based
on breeding performance, instead of resorting di-
rectly to expensive cytology. A related design prob-
lem is concerned with research questions of which
tester strains one should select from the Ames assay,
and what other short term test should be employed
for screening, if the end point is carcinogenesis. In
other words, we are asking what battery of tests and
in what sequence a toxicological screen should be
composed. Currently, several government agencies
are dealing with this issue. Hopefully, the solution
will depend upon both biological theories and con-
siderable empirical evidence. For example, com-
pounds which are carcinogenic and their non-
carcinogenic chemical analogues are being tested in
laboratories throughout the world using various
short term tests. Finally, there is the possibility of
making the individual analyses more efficient. Re-
cently, Fears and Douglas (13) considered schemes
for more efficient use of pathologists' time in car-
cinogenesis studies. For example, one can envision a
scheme whereby pathologists initially look at only
the high dose groups and work with gross pathology
before proceeding to more expensive microscopic
work. All of these examples suggest design ap-
proaches which can provide substantial savings of
limited toxicological testing resources.

Risk Estimation
Recently, interest has been directed to statistical

models ofdose response for estimating low dose risk
based upon high dose data. Curve fitting has been
commonplace using functions such as probit, logit,
multihit, multistage, etc. Some of these functions
have a tradition in bioassay work, while others at-
tempt crudely to describe biological mechanisms.
For example, the multistage model assumes the car-
cinogenesis process is represented by a direct-acting
carcinogen interacting with DNA as in a single cell
somatic mutation theory. This simple model does not
include consideration of DNA repair, the immune
surveillance system, genetic or environmental sus-
ceptibilities in the population, or pharmacokinetics.

Currently, pharmacokinetic models are being
incorporated into the risk estimation process. For
example, Gehring (14) has been conducting some
interesting work with vinyl chloride. He has deter-
mined the Michaelis-Menten parameters and applied
these to exposure levels in Maltoni's vinyl chloride
carcinogenesis studies. This dose adjustment more
or less straightens out the dose response so that
effect is proportional to dose. Theoretical models are
quite useful, because one can postulate various
mechanisms and then examine how effective they

are in relation to issues such as risk assessment. For
example, in pharmacokinetics we want to know how
critical it is when one is estimating low dose effects.
Can the incorporation of kinetics change estimates
by orders of magnitude or not? It certainly is real
mechanistically, but quantitatively we must deter-
mine how important pharmacokinetic considera-
tions are when decisions on allocation of toxicolog-
ical resources are made. These are very difficult
resource questions that have to be worked outjointly
with toxicologists, biologists, and mathematicians.
From theoretical considerations, we can say that

we do know that one cannot distinguish between the
models if the response is purely dichotomous (i.e.,
cancer or no cancer). Also, we cannot establish from
the data alone either the existence or nonexistence of
thresholds, nor can we rule out the presence of a
linear term which predominates at the low dose
levels. Also it is well known that if risk estimates are
made very far from the experimental region, then the
choice of models is quite critical.

Potentially the greatest errors in extrapolating are
associated with mouse-to-man extrapolations. Much
empirical work for assessing the variability between
strains and species from existing data sets is needed.
Hopefully such empirical studies will help to provide
information about the statistical confidence in quan-
tifying the biological errors associated with risk es-
timation.

In conclusion, I see in various toxicological prob-
lem areas attempts to build mechanistic models and
then to evaluate the available statistical procedures.
Also, there is a need to expend a greater effort in
trying to evaluate the empirical evidence for consis-
tency with models and for attempts to quantify
biological model errors. Also, we must begin at-
tempts to develop efficient strategies for toxicolog-
ical assessment of materials. This applies to both the
different assays we have available and to using re-
lated information such as chemistries, food con-
sumption, etc., associated with these assays, which
is typically ignored statistically. Finally, in all as-
pects of statistical design and analysis of toxicolog-
ical experiments, we need a greater emphasis on the
understanding of the biological mechanisms in-
volved. With proper collaboration, both the tox-
icologist and the statistician will benefit.
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